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Laboratory 14 
Pulse-Width-Modulation Motor Speed Control with an Arduino Uno (modified from 
lab text by Alciatore) 

Required Components: 
• 1x Arduino microcontroller 
• 3x 0.1 µF capacitors 
• 1x 12-button numeric keypad 
• 1x NO pushbutton switch 
• 1x Radio Shack 1.5-3 V DC motor (RS part number: 273-223) or equivalent 
• 1x IRFZ34N power MOSFET (4V transistion) 
• 1x flyback diode (e.g., the IN4001 power diode) 
• 4x 1kΩ resistors 
• 3x red LEDs 
• 1x green LED 
• 4x 330Ω resistors 

Objective 
The objective of this laboratory exercise is to design and build hardware and software to implement pulse-width 
modulation (PWM) speed control for a small permanent-magnet dc motor. You will also learn how to 
interface a microcontroller to a numeric keypad and how to provide a numerical display using a set of LEDs. 

Introduction 

Pulse Width Modulation 
Pulse width modulation (PWM) offers a very simple way to control the speed of a dc motor and is one 
of the building blocks of a DC->AC inverter. Figure 14.1 illustrates the principles of operation of PWM 
control. A dc voltage is rapidly switched at a fixed frequency 𝑓𝑓 between two values ("ON" and "OFF"). 

A pulse of duration 𝑡𝑡 occurs during a fixed period 𝑇𝑇, where 𝑇𝑇 = 1
𝑓𝑓

 The resulting asymmetric 

waveform has a duty cycle defined as the ratio between the ON time and the period of the waveform, usually 
specified as a percentage: 
 

𝑑𝑑𝑑𝑑𝑡𝑡𝑑𝑑 𝑐𝑐𝑑𝑑𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑡𝑡
𝑇𝑇

 100%       (14.1) 
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As the duty cycle is changed (by varying the pulse width 𝑡𝑡), the average current through the motor will 
change, causing changes in speed and torque at the output. It is primarily the duty cycle, and not the 
value of the power supply voltage, that is used to control the speed of the motor. 

 

Figure 14.1 Pulse-width Modulation (PWM) 

With a PWM motor controller, the motor armature voltage switches rapidly, and the current through the motor is 
affected by the motor inductance and resistance. For a fast switching speed (i.e., large 𝑓𝑓), the resulting 
current through the motor will have only a small fluctuation around an average value, as illustrated in Figure 
14.2. As the duty cycle gets larger, the average current gets larger and the motor speed increases. 

 

Figure 14.2 PWM voltage and motor current 

The type of PWM control described here is called "open loop" because there is no sensor feedback for speed. 
This results in a simple and inexpensive design, but it is not possible to achieve accurate speed control 
without feedback. For precision applications (e.g., industrial robotics, DC->DC power converters and DC->AC 
power inverters), either a speed sensor (for motors) or a voltage sensor (for power converters and inverters) is 
required to provide feedback to the electronics or software in order to adjust the PWM signal in real-time to 
maintain the desired result (i.e., speed or voltage). For more information about precision motor control see 
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Section 10.5.3 in the textbook. Power converters and inverters (among other things) are covered in some 
depth in Power Electronics II (PHY541). 

Numeric Keypad Interface 
Figure 14.3 illustrates the 
appearance and electrical 
schematic for a common 12-key 
numeric keypad; although, the 
pin numbering isn't always 
consistent from one 
manufacturer to another. When 
interfaced to a microcontroller, 
a keypad allows a user to input 
numeric data. A keypad can also 
be used simply as a set of 
general-purpose normally-open 
(NO) pushbutton switches. The 
standard method to interface a 
keypad to a microcontroller is to 
attach the four row pins to 
inputs of the microcontroller 
and attach the three column pins 
to outputs of the microcontroller. 
By polling the states of the row inputs while individually changing the states on the column outputs, you 
can determine which button is pressed. See Section 7.7.1 in the textbook for more information.   

NOTE: If the pin-out of the keypad you are using is unknown, you can do a series of continuity tests (with 
different buttons held down) to easily determine the pin-out corresponding to Figure 14.3b. 

Hardware and Software Design 
The hardware and software required for this exercise will be designed using the microcontroller-based design 
procedure presented in Section 7.9 of the textbook. Each step is presented below. 

1. Define the problem. 

Use an Arduino microcontroller to design a pulse-width modulation speed controller for a small permanent 
magnet dc motor. The user should be able to change the speed via three buttons of a standard 12-key 
numeric keypad. One button (the 1-key) should increase the speed setting, a second button (the 4-key) 
should decrease the speed setting, and the third button (the *-key) should start the motor at the 
selected speed. The speed setting should be displayed graphically via a set of 4 LEDs. The speed setting 
should vary from "slow" to "fast" according to a scaled number ranging from 0 to 15 so the full range 
can be depicted on the LED display. The motor should run at a constant speed until the motion is 
interrupted by the user with the press of a pushbutton switch. 

Figure 14.3 Standard 12-key numeric keypad 



Laboratory 14 PWM motor 

4 
 

2. Draw a functional diagram. 
This is left as an exercise for you. Please include it on a separate sheet of paper with your summary 
sheet and questions at the end of the Lab. See Section 7.9 in the textbook for guidance. 

3. Identify I/O requirements. 
All inputs and outputs for this problem are digital and they are as follows: 
inputs: 

• 1 for the 3 buttons on the numeric keypad increase and decrease the speed and to start the 
motion. 

• 1 pushbutton switch to interrupt the constant speed motor motion. 

outputs: 

• 4 LEDs to indicate a relative speed setting from "slow" (0) to "fast" (15) as a binary number. 
• 1 pulse-width modulation (on-off) signal for the motor. 

4. Select an appropriate microcontroller. 
For this problem, we will use the Arduino whose 12 lines of digital I/O provide and 6 lines of analog 
in are more than enough capability for our I/O requirements. 

5. Identify necessary interface circuits. 
You will learn how to use a numeric keypad by poling columns and searching rows for pressed 
buttons. 
 
The motor speed will be controlled with a pulse-width modulation signal. We will use a power 
MOSFET to switch current to the motor. The gate of the MOSFET will be connected directly to a 
digital output pin on the PIC. The motor is placed on the drain side of the MOSFET with a diode 
for flyback protection. A MOSFET is easier to use than BJT because it does not require a base 
(gate) resistor, and you need not be concerned with base current and voltage biasing. 
 
The LEDs will be connected directly to four digital outputs through current-limiting resistors to 
ground. When the output goes high, the LED will turn on. 

6. Decide on a programming language. 
For this laboratory exercise, we will use the Arduino IDE. 

7. Draw the schematic. 
Figure 14.4 shows the complete schematic showing all components and connections. Figure 14.5 
shows a photograph of a completed design. The keypad is powered by a connection to 5V, this 
can be permanent (as show) or by connecting pin 3 and providing power only you wish to read 
the keyboard (to save power). The keypad is wired such that different resistors are in series with 
the 2kΩ pull up resistor (forming different voltage dividors) depending upon which button is 
held down (l0kΩ for the 1-key, 2kΩ for the 4-key, and 1kΩ for the *-key). The analog input pin A0 
reads the voltage divided value. The LEDs are attached to the four lowest order bits of PORTB 
(pins 8, 9, 10, 11). This allows the speed setting (0 to 15) to be output to PORTB directly (e.g., 
PORTB = speed). The result is a binary number display of the current speed where the green LED 
represents the least significant bit. The motor PWM signal is on pin 2. 
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NOTE - We are using only one column of the keypad. 

   

Figure 14.4 Complete schematic showing all components and connections. Note that LEDs are arranged from least significant 
bit (LSB) to most (MSB). 

 

Figure 14.5 Photograph of the actual device. 



Laboratory 14 PWM motor 

6 
 

8. Draw a program flowchart. 

Figure 14.7 shows the complete flowchart for this problem with all required logic and looping. Note that 
the LED display is active only during the keypad loop while the user is adjusting the speed. The 
keypad is polled using the Pot command and the speed display is updated approximately three 
times a second. The motor runs continuously in the PWM loop until the stop button is pressed. At that 
point the user can adjust the speed again. 

 

Figure 14.6 One possible complete Program Flowchart 
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9. Write the code. 
The code ("PWM.cal") corresponding to the flowchart shown in Figure 14.7 using the 
hardware illustrated in Figure 14.4 follows. The code is comented throughout with 
remarks so it should be self-explanatory. Whenever you write programs, you should 
always include copious remarks so you and others (e.g., co-workers and bosses) can later 
interpret what you have done. Please recreate this before coming to Lab so you will 
have more time to successfully complete the Lab in the allotted time. 
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The variable "mSpeed" stores a relative measure of the motor speed as an integer that varies from 0 
(slow) to 15 (fast). A speed of 0 corresponds to a duty cycle of 15% and a speed of 15 corresponds to a 
duty cycle of 35%. These duty cycle percentages were determined experimentally to produce a good range 
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of motor speeds using a 5 V supply. (Note - the motor is rated at only 1.5 to 3 V so high duty cycles 
would result in excessive average voltage, which could damage the motor.) 

One challenge is how to deal with the variable amount of time to have the motor on and off (according 
to the speed). The delay functions require constants, the language’s way of ensuring that the delay 
doesn’t get extended because of calculations happening in the delay function input. To deal with this I 
have defined 3 constants, _T0 which corresponds to the minimum time (in μs) for the motor to be run in 
a duty cycle, _DT which is the amount that gets progressively added to the on time (in μs), and _TREST 
the amount that the motor is certainly off in a cycle (in ms). As a result the on-time for the motor is 

𝑡𝑡𝑜𝑜𝑜𝑜 = 𝑇𝑇0 + 𝐷𝐷𝑇𝑇 ∗ 𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑑𝑑 

(in μs) and 

𝑡𝑡𝑜𝑜𝑓𝑓𝑓𝑓 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 ∗ 1000 + 𝐷𝐷𝑇𝑇 ∗ (15 − 𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑑𝑑) 

(in μs) where the 1000 is for the number of μs in a ms. 

Note that the period is constant 

𝑇𝑇 = 𝑇𝑇𝑜𝑜𝑜𝑜 + 𝑇𝑇𝑜𝑜𝑓𝑓𝑓𝑓 = 𝑇𝑇0 + 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 ∗ 1000 + 𝐷𝐷𝑇𝑇 ∗ 15 

10. Build and test the system. 
That is your job using the procedure in Section 14.5. 

Troubleshooting and Design Improvement 
There are several changes you can make to the circuit to improve the design's robustness. You will 
definitely want to explore some of these recommendations if you have trouble getting your circuit to function 
properly. Because the motor is being switched on and off, and because the currents in the motor are being 
switched by the internal commutator, spikes and noise can occur on the 5V and ground lines. Also, the Lab power 
supply voltage might be affected by current spikes (e.g., the voltage can drop suddenly, causing the PIC to reset). 
To help minimize these effects, you can add a 1 µF or larger capacitor across the 5V and ground line inputs to your 
breadboard to help stabilize the voltage there. You might also try increasing the capacitance between Vdd and 
ground on the PIC (i.e., replace the 0.1 µF with 1 µF or more). You can also add capacitance (e.g., 0.1-1.0 µF) across 
the tabs of the motor to help filter out spikes and noise from the commutation. Also, make sure the wires 
attached to the motor are soldered to the motor tabs to ensure solid and reliable connections. 

Another alternative is to use separate power sources for the PIC circuit (a Lab power supply) and the motor 
(e.g., a second channel of the Lab power supply, or a 9V battery with a 5V voltage regulator). This will 
help limit voltage fluctuations in the PIC circuit when the motor turns on and runs. 
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For other advice and recommendations, see Section 15.5 in Lab 15. 
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Procedure / Summary Sheet 
1. Complete and attach a detailed functional diagram, using Sections 1.3 and 7.9 in the textbook for 

guidance. Submit this on a separate sheet of paper. 
2. Use the Arduino IDE (either down load it to your computer or use the online version) to create a project 

sketch called "PWM.cal" listed in Section 14.3. Save the file in a folder in your network file space. 
3. Load the sketch onto the microcontroller. 
4. Build the circuit shown in Figure 14.4 and insert the PIC programmed with "PWM_caL" You can omit 

the motor driver circuit for now because it is not used in the calibration program. 
5. See the Trouble Shooting Section if your circuit is assembled correctly but does not work properly. 

Show me your functioning circuit so I can verify it is working. 
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LAB 14 QUESTIONS 

Group: ____      Names: _______________________        ________________________  

1. Did your circuit work the first time, without modifications? If not, what things did you try from 
the Trouble Shooting Section? Which things worked, and why do you think they worked? 
 
 
 
 
 
 
 
 
 

2. In the program, we used 30,000 microseconds for the PWM period.  What frequency f (in Hz) 
does this correspond to? 
 
 
 
 
 
 
 

3. How would the motor respond to a very low (close to 0%) duty cycle PWM signal? 
 
 
 
 
How would changing the PWM signal frequency f (i.e., making it lower or higher) change the motor 
response?
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4. What would happen if other keys (besides the 1-key, 4-key, and *-key) are pressed down during the 
keypad loop? 
 
 
 
 
 
What would happen if two of the three valid keys are pressed and held down at once (e.g., the 1-key 
and the *-key)? 
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